
Abstract Classifying genotypes into clusters based on
DNA fingerprinting, and/or agronomic attributes, for
studying genetic and phenotypic diversity is a common
practice. Researchers are interested in knowing the mini-
mum number of fragments (and markers) needed for
finding the underlying structural patterns of diversity in
a population of interest, and using this information in
conjunction with the phenotypic attributes to obtain
more precise clusters of genotypes. The objectives of
this study are to present: (1) a retrospective method of
analysis for selecting a minimum number of fragments
(and markers) from a study needed to produce the same
classification of genotypes as that obtained using all the
fragments (and markers), and (2) a classification strategy
for genotypes that allows the combination of the mini-
mum set of fragments with available phenotypic attri-
butes. Results obtained on seven experimental data sets
made up of different plant species, number of individuals
per species’ and number of markers, showed that the ret-
rospective analysis did indeed find few relevant frag-
ments (and markers) that best discriminated the geno-
types. In two data sets, the classification strategy of com-
bining the information on the relevant minimum frag-
ments with the available morpho-agronomic attributes
produced compact and well-differentiated groups of ge-
notypes.

Keywords Molecular markers · Fragments · Cluster
analysis · Simple matching coefficients · Analysis of 
molecular variance · Mixture models

Introduction

The study of phenotypic and genetic diversity to identify
groups with similar genotypes is important for conserv-
ing, evaluating and utilizing genetic resources, for study-
ing the diversity of pre-breeding and breeding germ-
plasm, and for determining the uniqueness and distinct-
ness of the phenotypic and genetic constitution of geno-
types with the purpose of protecting the breeder’s intel-
lectual property rights.

To pursue these objectives, various types of attributes
are commonly measured in each genotype: (1) continu-
ous phenotypic variables such as morpho-agronomic
traits (maturity, height, phenology, etc.); (2) discrete phe-
notypic variables such as grain color and texture, resis-
tance to diseases and insects, etc. (these are usually
multi-state variables); and, (3) discrete genetic marker
characteristics using RFLPs and AFLPs that are binary
(absence/presence). Therefore, for a total of p attributes,
each genotype can be visualized as being located in a 
p multi-dimensional space in which each dimension is
represented by one attribute. The true underlying homo-
geneous sub-populations (groups) of genotypes and their
shape and structure are unknown. What is known is that
the association between attributes affects the shape of the
sub-populations and that their structure depends on the
composition of the sub-populations. Hierarchical and
non-hierarchical classification methods attempt to re-
cover the true shape and structure of the underlying 
sub-populations.

Hierarchical clustering methods, such as those of
Ward (1963) and UPGMA, are geometrical techniques
widely used for finding homogeneous sub-populations
where continuous or discrete variables can be combined
and used by means of the Gower (1971) distance. Statis-
tical classification methods use the concept of mixture
models in which, beginning with an a priori classifica-
tion of the genotypes into g sub-populations and consid-
ering each sub-population as one of the distributions in
the mixture, the vector of mean attribute values (µµ) and
the variance-covariance matrix (ΣΣ) for each of the 
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g groups are estimated by the maximum-likelihood
method.

In general, when morpho-agronomic and genetic
marker data are available on a set of genotypes for
studying their diversity and the formation of homogene-
ous groups, two types of hierarchical classifications are
independently performed. One is obtained based on the
morpho-agronomic traits in which a standard metric dis-
tance (such as the Squared Euclidean) is computed and a
clustering strategy, such as Ward or UPGMA, is applied.
The other classification is obtained based on the genetic
marker attributes when genetic similarities (or dissimi-
larities) of n individuals are determined with molecular
markers such as RFLPs, AFLPs, or SSRs. Using each
fragment as an attribute (with values of 0 and 1 denoting
the presence or absence of the fragment in that genotype,
respectively), and applying any clustering strategy (such
as single or complete linkage, UPGMA, the centroid
method, the Ward method, etc.), genotypes can be clus-
tered into groups that are as homogeneous as possible
and heterogeneous among groups. In general, results
showed that groups formed based on both continuous
and categorical classifications had a low to medium con-
sensus. A unified statistical classification approach using
both continuous and categorical variables seems useful
for forming homogeneous groups.

Recently, Franco et al. (1998) proposed the Modified
Location Model (MLM), which combines all the cate-
gorical variables into one multinomial variable, W, that is
then used with the available continuous variables. Initial
groups are defined by the Ward method and then im-
proved by the MLM. This strategy is called the two-
stage Ward-MLM method and has been extensively used
to classify maize accessions from most of the Latin
American and United States gene banks (Taba et al.
1999) Later, Franco et al. (1999) extended the two-stage
Ward-MLM method to the case of three-way data when
attributes of genotypes are measured in various environ-
ments (attributes×genotypes×environments), following
the Basford and McLachlan (1985) approach.

An important issue that arises in the context of using
genetic markers for classifying individuals relates to the
number of fragments and markers needed to provide an
adequate clustering. Researchers are interested in know-
ing if the clusters formed using all the marker-fragment
combinations can be obtained by using a reduced num-
ber of marker-fragments. In other words, what is the
minimum number of fragments (and markers) needed to
find the underlying structural pattern of the population?
Certainly, this depends on many factors such as the ge-
netic and phenotypic diversity of the individuals, the
number of individuals, the type of genetic markers used
to characterize the individuals, and the similarity coeffi-
cient, etc. The precise answer to this question can only
be obtained by performing a retrospective (a posteriori)
analysis.

In genetic-resources conservation, in pre-breeding
and breeding activities, and in the identification of
unique and distinct genotypes, finding the minimum

number of fragments (and markers) that differentiate the
individuals of a given sample is useful when combined
with available phenotypic attributes. Clusters can be
formed using the mixture of categorical (marker-frag-
ment) and continuous (morpho-agronomic) attributes by
means of the MLM proposed by Franco et. al (1998).
The main problem is that, with a large number of mark-
er-fragment attributes combined with several phenotypic
variables, the large number of parameters that need to be
estimated (µµ and ΣΣ for each of the g groups) can be a se-
rious impediment for using the MLM or any other statis-
tical model. Thus, in this context, reducing the number
of marker-fragments is necessary. The approach present-
ed in this study addresses this issue.

This study has two objectives: (1) to present a retro-
spective method of analysis for selecting a minimum
number of fragments (and markers) that will produce the
same (or nearly the same) classification of the individu-
als as that obtained using all the fragments in the study,
and (2) to show that the relevant minimum set of marker-
fragments obtained using the retrospective analysis can
be combined with the continuous variables to obtain
compact groups of genotypes that can be well-character-
ized based on the two kinds of attributes included in the
analysis.

Materials and methods

A retrospective analysis for selecting a minimum set 
of marker-fragments

When genetic similarities (or dissimilarities) of n individuals are
measured with DNA marker methods, such as RFLPs or AFLPs
using m markers, the data can be arranged in a matrix of n obser-
vations (genotypes) and k variables (fragments). The k columns
are called fragments or morphs, which may correspond to specific
markers (in this study we will use the terms fragments and 
markers). The k fragments are grouped into m markers, and each
marker group has a size ki (each fragment belongs to one and only
one marker), such that 

The proposed strategy for finding subsets of fragments consists
of the following steps: (1) classifying the individuals using all the
available k fragments, (2) estimating the optimum number of
groups (g clusters), (3) ranking the fragments according to their
ability to discriminate the clusters found in step 2, (4) using the
ranking of all the fragments (found in step 3) to search for the
minimum number of fragments that will form equal (or very simi-
lar) clusters to those obtained when all the fragments were includ-
ed, and (5) identifying the markers that correspond to the selected
fragments.

Classifying the individuals

Distance between individuals

For each genotype, the fragments are binary attributes (taking val-
ues of 0 or 1). Two similarity (S) measures (or their complements,
distances D=1-S) are commonly used: the Jaccard coefficient and
the Simple Matching coefficient (Kaufman and Rousseeuw 1990).
Expressed as distance, the Simple Matching coefficient is
dij=(b+c)/k; and the Jaccard coefficient is dij=(b+c)/(k−d), where
dij is the distance between individuals i and j, k is the total number
of fragments, (b+c) is the number of fragments in which individu-
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als i and j disagree (b=1,0 and c=0,1), and d is the number of frag-
ments in which individuals i and j agree at zero (0,0). The differ-
ence between the respective distances is that Jaccard assumes that
the agreement (0,0) is non-informative.

If the binary attributes are treated as continuous variables and
the squared Euclidian distance is computed, the result is the Sim-
ple Matching distance (Wishart 1987; Kaufman and Rousseeuw
1990) and thus it has Euclidean metric properties, whereas Jaccard
does not. This property of the Simple Matching distance allows its
use in hierarchical clustering strategies such as the minimum vari-
ance within a group, proposed by Ward (1963), and the analysis of
molecular variance, AMOVA (Excoffier et al. 1992), used for esti-
mation of the variance components among and within groups.

The AMOVA is an algorithm for the analysis of the genetic
structure of populations based on molecular data. For a specific
structure, the algorithm estimates the within-groups sum of squar-
es as the sum of the squared Euclidean distances between each
genotype and its group centroid; the total sum of squares is ob-
tained as the sum of squared Euclidean distances between each
genotype and the centroid of the whole sample; and the among-
groups sum of squares is obtained as the difference between the
‘total’ minus the ‘within’. Because the Simple Matching distances
are squared Euclidean distances, the AMOVA sum of squares has
an interpretation that is straightforward. For the AMOVA analysis,
we used the ARLEQUIN software (Schneider, et al. 2000) with
the matrices of distances used as input.

The strategy for searching and selecting the minimum subset
of fragments uses the Ward method for clustering individuals and
the AMOVA procedure for defining the appropriate number of
groups by examining the variance components among and within
groups. Therefore, the distance measure used in this study is the
Simple Matching coefficient.

NTSYSpc (Rohlf 1997) software was used to compute Simple
Matching similarity coefficients (S), which were then transformed
into distances D=(1-S).

Clustering method 

The clustering method used in this study was the minimum vari-
ance within groups proposed by Ward (1963). Ward’s hierarchical
method combines, in each step, the two clusters whose fusion
yields the least increase in the Euclidean sum of squares within
groups; this sum of squares is defined as the sum of the squared
distances from each individual to the centroid of the cluster to
which it belongs. Therefore, the variance between groups is maxi-
mized while the variance within groups is minimized. Due to the
Simple Matching distance properties, the Euclidean sum of squar-
es is the sum of the Simple Matching distances among all the indi-
viduals belonging to a cluster. As expressed by Wishart (1987),
“Ward’s method is only meaningfully defined for Squared Euclid-
ean distance” (or the Simple Matching distance). The classifica-
tion was carried out using the HIERARCHY routine of the 
CLUSTAN software (Wishart 1987) applied to the matrices of
Simple Matching distances.

Defining the optimum number of clusters

A preliminary number of clusters was determined using the fusion
values obtained from the Ward method and the upper-tail rule
(Mojena 1977). This procedure was employed by Franco et al.
(1997, 1998) in a sequential clustering strategy using phenotypic
attributes. Then, AMOVA (Excoffier et al. 1992) was used to esti-
mate the “among” and “within” variance components for different
numbers of clusters around the number determined by the upper-
tail approach. The final number of clusters was defined as those
producing the largest increment in the among-groups variance
(largest reduction in the within-group variance) and/or the maxi-
mum average distance among groups.

The F value (Fst) from the AMOVA analysis is the fixation in-
dex (or Wright’s F statistic) that measures the genetic differentia-

tion of the sub-populations (or sub-groups). Values of Fst between
0.05 and 0.15 indicate moderate genetic differentiation among
groups, whereas values of Fst between 0.15 to 0.25 and above 0.25
indicate great and very great genetic differentiation, respectively
(Hartl and Clark 1997).

Searching for the minimum subset of fragments

A generalized linear model (McCullagh and Nelder 1983) was
used for modelling the dependent variable, which is the proportion
of genotypes that take the value of 1 in each of the clusters defined
previously (1 being the presence of the fragment). The indepen-
dent variable is the group (cluster), as in the usual ANOVA model,
and the response variable is the proportion of the jth fragment in
the ith cluster. This model is repeated k times with the objective of
estimating the differences among groups for each of the frag-
ments.

Assume a classification that gives rise to g clusters (i=1,2, … ,g),
each of them with ni genotypes   The jth fragment will
take the value of 1 in x1j, x2j, … , xgj, genotypes, where xij is the
observed value of a random variable Xij: the number of successes
(genotypes taking the value 1) in ni trials (the ni genotypes belong-
ing to the ith group); Xij is assumed to take a Binomial distribution
with parameters(ni, θij). The proportion pij=xij/ni estimates the pa-
rameter θij of the g binomial distributions. For each fragment the
linear model is

E(pij) = θij = αj + τij,

where θij is the expected proportion of the jth fragment in the ith

cluster [E(pij)], αj is the intercept term, and τij is the effect of the
ith group or cluster. The above model can be fitted to test the null
hypothesis that the proportion of genotypes in which the jth frag-
ment takes the value of 1 is the same in all the clusters, i.e., Ho:
θ1j = θ2j = … = θgj, “the groups are equal with respect to the jth

fragment.” This model is very simple, but presents some estima-
tion problems such as the possibility of obtaining values of pij that
can be greater than 1. To overcome this problem, it is recommend-
ed that one uses the link function logit(pij) = log[pij/(1-pij)] within
the Generalized Linear Model framework.

Using the GENMOD procedure of SAS (1993), it is possible to
compute the chi-square values and the probability of Type-I errors
(α̂) for the likelihood ratio test for testing the null hypothesis. The
probability values of each fragment are ordered so that each frag-
ment is ranked by its ability to discriminate between clusters.

Selecting the minimum number of fragments

In order to search for the minimum number of fragments that can
produce the same (or at least a very similar) classification as that
obtained with all of them, the individuals are again clustered, but
in this instance using a reduced number of fragments selected by
their significance level in the model previously described.

To measure the degree of coincidence between the classifica-
tion using all fragments and that based on a reduced number, three
indices were used: Rand, Jaccard and Corrected Rand (Milligan et
al. 1983). These consensus indices between classifications are
based on the number of agreements and disagreements found in
both classifications. Let a and d be the number of pairs of individ-
uals that agree in both classifications; they agree in the sense that
both classifications locate that pair of individuals in the same clus-
ter (a) or in different clusters (d). Further, let b and c be the num-
ber of pairs of individuals that are classified differently by each
method.

The consensus indices are defined, based on the proportion of
agreements, as follows:
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where Nc is a correction factor due to chance and is defined 
as the expected value of the Rand index [E(Rand)], assuming
that each table of agreements and disagreements is the realiza-
tion of a random variable with a Hypergeometric distribution
subject to a true classification for which the value of the index is
zero.

The Rand index is simply the proportion of agreements over
the total number of pairs (similar to the Simple Matching similari-
ty), whereas the Jaccard index is the proportion of agreements of
the type “both in the same cluster” over the total number of pairs,
but excluding the agreements of the type “both in different group”
(similar to the Jaccard similarity). The Corrected Rand (C-Rand)
is the Rand index with the correction due to chance. Milligan et al.
(1983) gave the formulas to compute these indexes based on fre-
quencies.

In addition, the correlation coefficients between distance ma-
trices were calculated. One distance matrix is obtained when all
fragments are used, and the other distance matrix is obtained when
a reduced number of fragments are employed. These correlation
coefficients were calculated using the MXCOMP routine of
NTSYSpc (Rohlf 1997). The correlation coefficients between
pairs of distance matrices are the Pearson’s correlation coefficients
between distances computed for each pair of individuals using all
fragments or a subset of them.

Missing values

Missing values are common and can arise for several reasons,
such as the failure of an amplification or restriction reaction, 
low-quality DNA or old reagents, poor electrophoresis conditions
causing blank lanes, or inability to score a lane with confidence.
In this study, the distances were calculated using only com-
plete information for each pair of individuals, without any correc-
tion.

It should be pointed out that the presence of a large number of
missing values could cause distortions and inconsistencies in the
process of reducing the number of fragments. Furthermore, miss-
ing values can be a problem for estimating the ‘between’-and
‘within’-group variances in the AMOVA. In this study, AMOVA
was applied to the distance matrices, and although the missing 
values did not directly affect the results, they did influence the 
distance calculations. 

Table 1 shows the percentage of missing values out of the total
number of values and the percentage of genotypes with at least
one missing value, for each experimental data set used in this 
paper.

Experimental data 

Seven data sets from three crops (maize, wheat and tomato) and
two types of genetic markers (RFLP and AFLP) were used. The
data sets contained different numbers of genotypes, markers and
fragments. Two data sets were characterized with two different
types of markers, allowing straight comparisons between types of
markers. Table 1 describes the seven data sets in terms of the num-
ber of genotypes, the number of fragments, the type of markers,
and other characteristics.

Two maize data sets were included: maize diallel 1 (MD1)
and maize diallel 2 (MD2). RFLP and AFLP markers were used
to evaluate the genetic diversity of these diallel experiments. The
MD1 data set included 16 lines evaluated for their level of
drought tolerance: five Tuxpeno Sequia (TS) lines, four La Posta
Sequia (LP) lines, and seven elite lines from different maize
sources (CML) presenting different performance under drought
conditions. The MD2 data set comprised 15 diverse elite maize
lines used as testers in the different CIMMYT maize sub-
programs.

The tomato genetic diversity (TGD) contained a set of tomato
genotypes, landrace accessions, and one wild species. The geno-

types and landraces were from the United States, Europe, and
Central and South America, including the Galapagos Islands, and
the sample as a whole showed a considerable amount of genetic
diversity.

Two wheat data sets were included. The bread wheat diversity
set (WBD) is a set of sister lines and a few related controls. Al-
though these are all highly related lines, they segregate for the
presence of a translocated segment of chromosome 1 (1B/1R), so
lines with the translocation contain part of a rye chromosome. The
genetic diversity in this set is therefore very high, but it is a direct
function of this chromosomal region only. This is probably why
this data set shows a high coefficient of variation (Table 1). The
WGD data set is formed using the AFLP genotyping of 72 Spring
bread wheats. These included 32 CIMMYT varieties released be-
tween the 1960s and 1990s, and 40 genotypes from different coun-
tries, among which 13 are landraces. The WGD data represent a
highly diverse group of genotypes, although it includes a few
highly related sister lines.

The Modified Location Model for combining the reduced set 
of fragments with the phenotypic data

Non-hierarchical statistical methods for classifying individuals
include the mixture models, such as the Gaussian Model (GM)
(which only deals with continuous variables) (Wolfe 1970). For
the GM and other mixture models, the initial groups (or sub-
populations) must be defined a priori, and then the GM attempts
to improve them by a maximum-likelihood iterative process that
results in a solution that corresponds to a global or local maxi-
mum of the likelihood function. The initial groups can be defined
in different ways. Franco et al. (1997) proposed, with a hierarchi-
cal method such as Ward (or UPGMA), using Gower’s distance.
Defining the initial groups by this strategy allows the use of all
available information, including categorical and continuous vari-
ables, for defining the a priori groups. This sequential (two-stage)
clustering strategy, called Ward-GM, was extensively used by
Franco et al. (1998) in 29 data sets and proved to form more-
compact and separated groups than the initial groups formed by
the Ward method per se. However, for improving the groups us-
ing the GM, only continuous attributes can be utilized, and infor-
mation contained in the discrete attributes cannot be incorporated
into the GM model.

Lawrence and Kraznowski (1996) extended the GM for the
mixture of categorical and continuous variables in a model
called the Location Model (LM). They proposed combining all
of the categorical variables into one multinomial variable, W,
and combining the W variable with the continuous variables. The
LM must have observations in every combination of the initial
groups and all of the levels of the multinomial variable W. In
practical applications for classifying genotypes it is very likely
that this assumption is not fulfilled so usually the LM cannot be
applied.

The Modified Location Model (MLM) of Franco et al. (1998)
was used for combining the information on categorical and contin-
uous variables, and overcomes the problem of empty cells for
some combinations of initial groups and levels of the multinomial
variable. The initial groups are defined by the Ward method and
then improved by the MLM. This two-stage strategy is called the
Ward-MLM. Details on the theory and applications of the Ward-
GM and Ward-MLM methods are given in Franco et al. (1998,
1999).

The Ward-MLM strategy was applied to data from diallel 1
(MD1) and diallel 2 (MD2) using, as discrete variables, the rele-
vant fragments that produced the same classification of lines as
that obtained when all fragments were used. The three continuous
variables included in MD1 were the grain yield of the 16 lines 
under severe drought stress (SS), intermediate drought stress (IS),
and well-watered conditions (WW). In MD2, five phenotypic vari-
ables measured in each of the 15 lines included in this study were
days to anthesis, days to silking, plant height, ear height, and grain
weight.
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Results and discussion

Searching for a minimum set of genetic markers

Genetic diversity and the number of final clusters

According to the values of total variance (Vtot) and the
average distances between pairs of genotypes (d̄n), the
data sets with the greatest genetic diversity are maize
MD1 and MD2, when studied with AFLPs (Table 1).
The data sets with the smallest genetic diversity were 
tomato, TGD, when studied with RFLPs, and one wheat
set, WGD, when studied with AFLPs. The data sets with
intermediate genetic diversity were MD1 and MD2 with
RFLPs, and WBD with AFLPs.

The data sets with a minimum coefficient of variation
(CVd) among distances were MD1 and MD2 with RFLPs
and AFLPs (Table 1). These results indicate that, for
these data sets, all pair-wise distances are close to the
mean,  d̄n. On the other hand, the high coefficient of vari-
ation among distances for WBD and TGD indicates the
presence of some very different pair-wise genotypes.
These results are logical because in WBD data some
lines contained the 1B/1R translocation from rye and
most of the polymorphisms found in the markers is
found on this region, causing a very large differentiation
in lines carrying the translocation from those lacking it.
Furthermore, the TGD data set contained some wild spe-
cies. In contrast, in data sets MD1 and MD2, all the pair-
wise genotypes were, on average, highly dissimilar and
thus produced a small CVd but a large  d̄n.

The consensus indices and correlations

Values close to 1 for any of the consensus indices used
(Jaccard, Rand and C-Rand) correspond to a total agree-
ment between the classification of the genotypes ob-
tained with all the fragments, and the classification ob-

tained with the fragments selected using the proposed
strategy.

Results obtained from the consensus indices are con-
sistent with those obtained with the correlation matrices
(r), i.e., both increased as the number of fragments in-
cluded in the classification increased (Table 2). The ex-
ception is the WGD data set, in which the indices de-
creased when the fragments included increased from 132
to 202.

Finding the minimum number 
of marker-fragment combinations

For the MD1 and MD2 with RFLP data sets, using only
2% and 3% of the total fragments, respectively, it was
possible to obtain exactly the same classification of 
genotypes as that obtained using all the fragments with 
a Rand index, Jaccard and C-Rand indices of 100% 
(Table 2). For MD1 with RFLPs, there were nine frag-
ments (four markers with two fragments, and one marker
with one fragment). For MD2 with RFLPs, there were 15
fragments (four with two fragments, and seven with one
fragment). For TGD with RFLP data, 5% of the frag-
ments will recover 79%, 93% and 87% of the classifica-
tion obtained with all the markers according to the 
Jaccard, Rand and C-Rand indices, respectively. Thus, a
consensus of at least 90% measured by the Rand index is
achieved with 2–5% of the RFLP fragments (Table 2).
For these three RFLP data sets, the proposed strategy
found that only a very low percentage of the total RFLP
fragments give rise to classifications similar to those 
obtained with all fragments. Furthermore, for MD1 and
MD2 studied with AFLP markers, the fragment selection
strategy showed that with 3% and 7% of the total frag-
ments, a 100% consensus can be achieved. However, this
may not always be the case. Indeed, for WBD and WGD,
56% and 36%, respectively, of the AFLP fragments were
required to obtain a consensus of 90%.

Table 1 Type of marker (RFLP, AFLP), data set name (MD1,
MD2, TGD, WBD, WGD), number of genotypes (nG), number of
fragments (nF), and number of markers (nM). Diversity was mea-
sured by the total variance (Vtot), average distances between all

pairs of genotypes (d̄n), and the coefficient of variation for the dis-
tances (CVd). Percentage of missing values (%mis) of the total
nG×nF values, and percentage of genotypes with at least one miss-
ing value (%Gmis)

Item RFLP AFLP

MD1 MD2 TGD MD1 MD2 WBD WGD

Crop

Maize Maize Tomato Maize Maize Wheat Wheat

nG 16 15 110 18 17 96 72
nF 434 490 131 175 175 45 366
nM 54 48 39 6 6 4 8
Vtot 0.159 0.145 0.120 0.195 0.184 0.151 0.102
d̄n 0.294 0.284 0.228 0.355 0.358 0.268 0.194
CVd 12.6 7.8 45.5 16.2 11.5 50.4 25.8
%mis 1.4 0.4 1.9 0.5 0.0 4.4 0.6
%Gmis 67 12 65 17 0 59 14
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In a data set of 218 maize inbred lines (made up of
about half of the major tropical, subtropical, and temper-
ate CIMMYT maize germplasm) studied with 34 RFLP
markers that identified 314 fragments, the fragment-
selection strategy found that at least 64% of fragments
were required in order to achieve a 90% consensus mea-
sured by the Rand index (data not shown). This indicates
that when the genetic diversity of the included germ-
plasm is large, or the number of individuals is high, the
strategy still finds the required key fragments (and 
markers), although there may be additional key frag-
ments in these cases.

It is interesting to note that of the five and 11 selected
RFLP markers for MD1 and MD2, respectively, three
were the same for both data sets. These results indicate
that some markers may be better discriminators of geno-
types, regardless of the types of genotypes included, and
also that this strategy for selecting the relevant markers
is capable of detecting them. The different gemplasm in-
cluded in the study (maize, tomato and wheat) may have
also played a role in the minimum set of fragments 
required for having the same classification of genotypes
as that obtained by using all of the fragments.

Combining the information of the reduced set 
of fragments of diallel 1 and diallel 2 and the 
phenotypic attributes

The nine and 15 RFLP genetic fragments selected for
MD1 and MD2, respectively, together with their corre-
sponding continuous variables, were combined using the
Ward-MLM strategy. To compare results, two other clas-
sifications were performed in each diallel data set. One
classification was based only on the relevant marker-

fragments using the Ward method per se. The other clas-
sification was based on the Ward-GM strategy, but the
GM was applied based only on the continuous variables
(without including the relevant marker-fragment data).

For diallel 1 (MD1), the Ward (D) identified three
groups, whereas the Ward-GM (C) and the Ward-MLM
(M) methods found four groups (Table 3). In Table 3,
fragment 1 belongs to one marker and fragments 2–3, 4–5,
6–7 and 8–9 belong to four different RFLP markers.
Based on the Ward-MLM (M) strategy, group 1 clustered
the four TS lines and five CML lines with 
low grain yield performance on severe drought stress (SS)
and intermediate drought stress (IS) as well as well-
watered (WW) environmental conditions. With respect to
the nine relevant RFLP fragments, lines of group 1 seem
to have a fairly consistent response in terms of the ab-
sence/presence of the fragments; most of them were
scored 0 for the fragments, except for fragment 5 with
which most lines were scored for presence (1). Group 2 of
the Ward-MLM strategy included two CML lines with
high grain yield values in the three environments, but no
clear pattern of response with regard to the nine frag-
ments. Group 3 of the Ward-MLM strategy had one LP
line that was the highest yielding line in IS and WW.
Group 4 of the Ward-MLM strategy comprised four LP
lines with intermediate grain yield in SS, IS and WW, and
a highly consistent pattern of absence/presence on the nine
fragments; contrary to group-1 lines, these lines showed
the presence of most of the fragments, except fragment 5.

The average Mahalanobis distance between groups
using the continuous variables showed that when the
groups are formed based on only the continuous vari-
ables, they are well separated(D2=61). When the groups
are formed based on only the discrete variables, they do
not show a clear separation, (D2=3); but when the groups

Table 2 Number of significant fragments (sF), percent of signifi-
cant fragments (%sF), number of associated markers (sM), percent
of associated markers (%sM), significance level at the given num-
ber of selected clusters (Sig.), Jaccard, Rand, and Corrected Rand

indices of consensus between the classification obtained with all
fragments and using only the significant fragments. Correlation
coefficients between pairs of distance matrices(r)

Marker Data sF %sF sM %sM Sig. Jaccard Rand C-Rand r

RFLP MD1 9 2 5 9 0.002 1.000 1.000 1.000 0.351

RFLP MD2 15 3 11 23 0.010 1.000 1.000 1.000 0.485

RFLP TGD 106a – – – – 1.000 1.000 1.000 0.999
14b – 7 – <0.001 0.868 0.960 0.924 0.876

7b 5 4 10 <0.001 0.791 0.930 0.872 0.868

AFLP MD1b 5 3 3 50 <0.001 1.000 1.000 1.000 0.467
4 – 3 – <0.001 0.508 0.810 0.680 0.443

AFLP MD2b 13 7 5 83 0.010 1.000 1.000 1.000 0.444
12 – 5 – 0.007 0.561 0.868 0.759 0.447

AFLP WBD 34 – 4 – 0.050 0.936 0.984 0.968 0.981
25 56 4 100 <0.001 0.747 0.928 0.843 0.938

AFLP WGD 202 – 8 – 0.160 0.463 0.844 0.643 0.930
132 36 8 100 0.050 0.573 0.899 0.743 0.622

98 – 8 – 0.010 0.446 0.853 0.609 0.522

a Only 106 markers of a total of 131 presented variation (polymorphism)
b These rows are related to the classification based on 106 fragments
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are formed based on both variables – discrete and contin-
uous – the separation of the groups is fairly good
(D2=45). On the other hand, the average distance be-
tween groups using the discrete variables showed that
when the groups are formed based on only the discrete
variables, they are well differentiated (Ddisc=32). When
the groups are formed based on only the continuos vari-
ables, the separation is poor (Ddisc=5); but when the
groups are formed based on both variables – continuous
and discrete – the groups are well separated (Ddisc=30)
and as good as when only the discrete variables are con-
sidered. This result indicates that the classification using
both continuous and discrete variables produces well-
defined and separated clusters.

It is interesting that two of the five RFLP markers that
were selected, marker of fragments 5–6 and marker of
fragments 7–8, mapped in genomic regions identified as
being involved in the expression of a good synchrony
mechanism between pollen shedding and silking emer-
gence under drought conditions (Ribaut et al. 1996).
This floral mechanism, known as the anthesis-silking in-
terval (ASI), is one of the most important indicators of
drought tolerance in maize. In addition, it has been ob-
served in other maize crosses that the marker of frag-
ment 1 also mapped on the top of the short arm of chro-
mosome 7 which is also a key genomic region involved
in the maize drought response (unpublished data).

For diallel 2 (MD2), the Ward (D), Ward-GM (C) 
and Ward-MLM (M) strategies identified five groups

(Table 4). Based on Ward-MLM, lines in group 1, and to
some extent lines in group 2, are low yielding and early
maturing as compared to lines in group 4, which had the
highest mean yield, late maturity, and were taller. The
patterns on the relevant marker-fragment showed that for
some fragments, lines in group 4 were scored for the
presence of most of the 15 fragments, whereas lines from
groups 1 and 2 tended to be scored for their absence. For
example, fragments 11, 13 and 14 are present in the three
lines of group 1 and absent in the four lines of group 4.
By contrast, fragment 4 is absent in lines of group 1 and
present in lines of group 4.

Similar to diallel 1, in diallel the average distance be-
tween groups based only on the continuous variables
(D2) and based only on the discrete variables (marker-
fragment) (Ddisc) balanced out the influence of the dis-
crete and continuuos variables and gave both types of
attributes the chance to contribute to the formation of
the groups. Similar to previous results, the use of the
Ward-MLM (M) produced compact and well-separated
groups with respect to all continuous and categorical
variables compared with classifications obtained based
only on categorical (D) or continuous (C) variables.

In summary, the results of this study indicate the ad-
vantage of classifying genotypes simultaneously, and in-
cluding categorical and continuous variables, in order to
obtain a good formation of clusters. The groups are well-
characterized based on both sets of variables.

Table 3 Values of grain yield in severe drought stress (SS), inter-
mediate drought stress (IS) and well-watered (WW) environments,
and nine relevant RFLP marker-fragments (1–9), for groups of 16
maize lines of diallel 1 (MD1) obtained using the Ward-MLM

strategy on the mixture of variables (M), using the Ward-GM
strategy for the three continuous variables (C), and using the Ward
method for the nine relevant RFLP marker-fragments (D)

Entry M C D SS IS WW Relevant fragment

– t/ha – 1 2 3 4 5 6 7 8 9

TS2 1 1 1 0.016 1.223 0.630 0 0 0 0 1 0 0 0 0
TS5 1 1 1 0.002 0.437 0.774 0 0 0 0 1 0 0 1 0
CML247 1 1 1 0.008 0.303 0.525 0 0 0 0 1 0 0 0 0
CML264 1 1 1 0.012 0.433 1.589 1 0 0 0 1 0 0 0 0
CML268 1 1 1 0.007 0.167 1.858 0 0 0 0 0 0 1 0 0
TS1 1 3 1 0.055 1.730 2.805 0 0 0 0 1 0 0 0 0
TS4 1 3 1 0.004 1.207 3.007 0 0 0 0 1 0 0 0 0
CML258 1 3 1 0.055 1.170 2.805 0 0 0 0 1 0 1 0 0
CML273 1 1 2 0.183 0.910 1.980 0 0 0 1 1 0 1 1 0

CML274 2 2 2 0.527 1.940 5.282 0 0 0 1 1 0 1 1 0
CML254 2 2 1 0.676 1.883 4.121 0 0 0 0 0 0 0 0 0

LP1 3 4 3 0.293 4.713 6.171 1 0 1 1 0 0 1 1 1

LP2 4 3 3 0.076 2.043 5.333 1 1 0 0 0 1 1 1 1
LP3 4 3 3 0.286 1.440 3.131 1 1 1 0 0 1 1 1 1
LP4 4 3 3 0.313 1.467 4.271 1 1 1 1 0 1 1 1 1
LP5 4 3 3 0.072 2.047 3.261 1 1 1 1 0 1 1 1 1

D2a 45 61 3
Ddisc

b 30 5 32

a D2: average Mahalanobis distance (using only the continuous at-
tributes) between groups formed based only on nine RFLP marker-
fragment, based on only three continuous variables, and based on
nine RFLP marker-fragments and three continuous variables

b Ddisc: average distance between groups (using only the discrete
variables) formed based only on nine RFLP marker-fragments,
based on only three continuous variables, and based on nine RFLP
marker-fragments and three continuous variables
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Conclusions

The retrospective method for selecting the most impor-
tant fragments (and markers) for the classification of in-
dividuals into homogeneous clusters found few relevant
fragments (and markers) that “best” discriminated the in-
dividuals. It is noteworthy that, although a substantial re-
duction in the required number of fragments and markers
was generally achieved by the proposed strategy, there
may be cases in which, due to the large genetic variabili-
ty of the germplasm, a large proportion of the total frag-
ments may be required to achieve an appropriate classifi-
cation of the germplasm.

Furthermore, the results of this study suggest that a
large number of RFLP fragments are not informative for
the purpose of discriminating genotypes. Thus, when no
information on the ability of the fragments (and markers)
to discriminate genotypes is available, a larger number
of these markers must be used. Although the relevant
fragments identified in each experiment are germplasm-
dependent, and therefore the markers associated with
those fragments must be defined for each new analysis,
the identification of the number of significant fragments
by the proposed retrospective analysis can be used to
predict the number of markers that should be considered
in future studies, when working with the same type of
germplasm and the same range of diversity.

This study shows that when simultaneously using ge-
netic markers and phenotypic variables to classify geno-
types, it is possible to obtain a relevant minimum subset

of marker-fragments that can be used in conjunction with
available morpho-agronomic data to better classify geno-
types, compared to using only the continuous or only the
discrete variables.
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